Dislocation Density-based Grain Refinement Modeling of Orthogonal Cutting of Commercially Pure Titanium

نویسنده

  • Hongtao Ding
چکیده

Recently, machining has been exploited as a means for producing ultra-fine grained (UFG) and nanocrystalline microstructures for various metal materials, such as aluminum alloys, copper, stainless steel, titanium and nickel-based super alloys, etc. However, no predictive, analytical or numerical work has ever been presented to quantitatively predict the change of grain sizes during machining. In this paper, a dislocation density-based viscoplastic model is adapted for modeling the grain size refinement mechanism during machining by means of a finite element based numerical framework. A novel Coupled EulerianLagrangian (CEL) finite element model embedded with the dislocation density subroutine is developed to model the severe plastic deformation and grain refinement during a steady-state cutting process. The orthogonal cutting tests of a commercially pure titanium (CP Ti) material are simulated in order to assess the validity of the numerical solution through comparison with experiments. The dislocation density-based material model is calibrated to reproduce the observed material constitutive mechanical behavior of CP Ti under various strains, strain rates and temperatures in the cutting process. It is shown that the developed model captures the essential features of the material mechanical behavior and predicts a grain size of 100-160 nm in the chips of CP Ti at a cutting speed of 10 mm/s.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dislocation Dynamics-Based Modeling and Simulations of Subsurface Damages Microstructure of Orthogonal Cutting of Titanium Alloy

In this work, a novel method is put forward to quantitatively simulate the subsurface damages microstructural alteration of titanium alloy components subjected to microscale cutting. A trans-scale numerical framework is conducted with the purpose of revealing the underlying influence mechanism of tool structure parameters on subsurface dislocation configurations using a dislocation dynamics-bas...

متن کامل

Limit of Dislocation Density and Ultra-Grain-Refining on Severe Deformation in Iron

It is well-known that severe deformation to metals causes a direct grain refinement of the matrix without special heat-treatments due to the mechanism of dynamic continuous recrystallization (DCR). However, the microstructural revolution during severe deformation is seemed to be different depending on the deformation mode, namely the direction of deformation. In general, multi-directional defor...

متن کامل

Mechanical Properties of Commercially Pure Titanium Grade 2 after Severe Plastic Deformation

Mechanical properties and microstructures of commercially pure titanium (CP-Ti) developed by a newly designed multi-pass equal channel angular pressing (ECAP) process and cold drawing were investigated. The ECAP apparatus was developed in order to improve the efficiency of common ECAP and the performance of finished products. A much stronger CP-Ti billet was produced by using the proposed proce...

متن کامل

THEORETICAL AND EXPERIMENTAL EVALUATION OF DISLOCATION DENSITY IN A WORKPIECE AFTER FORMING

Abstract: The theoretical calculation of dislocation density in different regions of a deformed workpiece of 99.99% pure copper has been carried out using different procedures consisting of Finite Element Method (FEM) and hardness measurement. To assess the validity of the results pertaining to these procedures, the dislocation density is experimentally measured utilizing the Differential...

متن کامل

Friction stir welding of dissimilar joint of aluminum alloy 5083 and commercially pure titanium

In this study, commercially pure titanium and aluminum alloy 5083 in connection rotational speed of 1120 rpm and a feed rate of 50 mm per minute for butt welding by friction stir welding has been successfully completed. Micro-structure, hardness and tensile test was conducted on the connection. Welding area is a composite of aluminum and titanium particles that the particles plays an important ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011